This paper studies the frequency response of edge-cracked magneto-electro elastic functionally graded (ECMEE-FG) plates using the extended finite element method (XFEM). First-order shear deformation theory (FSDT), von Karman's nonlinear strain-displacement equations, and a modified power-laware used to develop the numerical model. The coupled equations are derived and analyzed using Hamilton's principle and extended finite element methods. The influence of B-rich bottom and F-rich bottom material gradation, crack orientation, crack length, and aspect ratio on the geometrically nonlinear frequency response was investigated after the current study was validated. Furthermore, crack propagation behavior in the ECMEE-FG plate was examined. The results could be helpful for the design of functionally graded magneto electro elastic structures and devices.
Read full abstract