ObjectiveIn patients with tumor-related epilepsy (TRE), surgery traditionally focuses on tumor resection; but identification and removal of associated epileptogenic zone may improve seizure outcome. Here, we study spatial relationship of tumor and seizure onset and early spread zone (SOSz). We also perform quantitative analysis of interictal epileptiform activities in patients with both TRE and non-lesional epilepsy in order to better understand the electrophysiological basis of epileptogenesis. MethodsTwenty-five patients (11 with TRE and 14 with non-lesional epilepsy) underwent staged surgery using intracranial electrodes. Tumors were outlined on MRI and images were coregistered with post-implantation CT images. For each electrode, distance to the nearest tumor margin was measured. Electrodes were categorized based on distance from tumor and involvement in seizure. Quantitative EEG analysis studying frequency, amplitude, power, duration and slope of interictal spikes was performed. ResultsAt least part of the SOSz was located beyond 1.5cm from the tumor margin in 10/11 patients. Interictally, spike frequency and power were higher in the SOSz and spikes near tumor were smaller and less sharp. Interestingly, peritumoral electrodes had the highest spike frequencies and sharpest spikes, indicating greatest degree of epileptic synchrony. A complete resection of the SOSz resulted in excellent seizure outcome. ConclusionsSeizure onset and early spread often involves brain areas distant from the tumor. SignificanceUtilization of epilepsy surgery approach for TRE may provide better seizure outcome and study of the intracranial EEG may provide insight into pathophysiology of TRE.
Read full abstract