A theoretical investigation of the dynamic response of earth dams to the travelling seismic waves is presented. The earth dam is simplified as a truncated two-dimensional elastic wedge. The dam body consists of an isotropical linear viscoelastic material with homogeneous elastic modulus and density. The seismic waves travel along the longitudinal direction of the earth dam. The numerical calculations show the following. (i) For the longitudinal mode of vibration, the greater the ratio ( H L ) of the height to the lenght of the complete wedge, the more the natural transverse period of vibrational of the two-dimensional wedge is less than that of the one-dimensional wedge. Especially for the first two natural transverse period, this influence is large. The decrease of the ratio of the natural transverse period for a two-dimensional wedge to that for a one-dimensional wedge with the ratio H L is rapid for the higher than for the lower longitudinal modes. (ii) Comparing with the one-dimensional wedge, the natural transverse periods for the two-dimensional case in the complete wedge are lower, and they will increase as the coefficient of truncation, h H increases. (iii) When the frequency of forced vibration is less than the natural transverse frequency for one-dimensional wedge, the amplification is less for a two-dimensional wedge than for a one-dimensional wedge. (iv) When the phase difference of ground motion at both ends of the dam equals π, the amplification for a two-dimensional wedge is less than that for a one-dimensional wedge, but when the phase difference equals nπ, ( n > 1), the situation is reversed. (v) As the coefficient of truncation, h/H, increases, the displacement model partecipations decrease monotically. (vi) In general, the displacement caused by an earthquake is greater for a one-dimensional wedge than for a two-dimensional wedge when considering the seismic waves travelling, but the acceleration response of a two-dimensional wedge with long length of dam to travelling seismic waves with long dominant period is greater than that of a one-dimensional wedge. When the length of the dam is short enough, the response of a two-dimensional wedge without considering the influence of travelling seismic waves always gives the greatest value.