Sea fog significantly impacts marine activities, ecosystems, and radiation balance. We analyzed the decadal variation characteristics of sea fog frequency (SFF) over the northwestern Pacific and investigated the roles of the Pacific decadal oscillation (PDO) and sea surface temperature (SST) warming in driving these changes. The results show that SFF experienced a significant and sudden decadal increase around 1978 (up by 12.9%) and a prominent decadal decrease around 1999 (down by 7.8%). The sudden increase in SFF around 1978 was closely related to the PDO. A positive PDO phase induced unusual anticyclonic circulation and southerly winds over the northwestern Pacific, enhancing low-level atmospheric stability and moisture supply, thus facilitating sea fog formation. Nevertheless, the decrease in SFF around 1999 was related to SST warming in the north Pacific. The rise in sea temperatures weakened the SST front south of the foggy region, reducing the cooling and condensation of warm air necessary for sea fog formation. This study enhances the understanding of the decadal variability mechanism of SFF over the northwestern Pacific regulated by large-scale circulation systems and provides a reference for future sea fog forecasting work.
Read full abstract