OpenFOAM was utilized for analyzing bubble behavior and deformation of free liquid surface due to bubble formation and bursting in a rectangular container. Influence of three system parameters, orifice diameter, number of orifices and spacing between orifices, on various bubble dynamics and deformation of gas-liquid interface is presented. The study also incorporates information on bubble formation, bubbling frequency, and orientation of bubbles. Considering different orifice spacing, bubbling synchronicity is also reported. Details regarding interaction of wakes during bubble coalescence for single, double and triple inlet orifices are presented. The deformation of free liquid surface due to bubble formation and bursting is quantified using a new parameter called deformation index (D L * ). The analyses indicate that the frequency of bubble detachment is augmented with increase in orifice diameter and number of orifices. However, bubble detachment frequency is reduced when orifice spacing increased. Orientation of detached bubbles keeps on changing for larger orifice spacing. Results show that variations of these geometric parameters have substantial influence on free liquid surface deformation due to bubble bursting and other bubble behavior. Using results of these studies, one can develop a bubble-generating device for optimal performance.