Glucosamine (Glu) is a cartilage and joint fluid matrix precursor that modulates osteoarthritic joint changes. To improve the enzymatic stability, glucosamine was developed into nanoglucosamine by the ionic gelation method through sodium tripolyphosphate (TPP) as cross-linking agent. The optimized mass ratio of Glu:TPP was (3:1) with the particle size 163 ± 25 nm and surface charge −5 mV. Then Sinapic acid (SA) as a natural phenolic acid with strong antioxidant and antimicrobial activities has been grafted onto glucosamine nanoparticles (GluNPs) with grafting efficiency (73 ± 6 %). The covalent insertion of SA was confirmed by UV–Vis, FTIR, 1HNMR, XRD, and FESEM analyses and the other physicochemical properties were also characterized. SA-g-GluNPs showed spherical shape with a mean diameter of 255 ± 20 nm and zeta potential +16 mV. The in vitro release profile of SA-g-GluNPs exhibited the sustained and pH-dependent drug release property. SA-g-GluNPs had a more pronounced effect on reducing the elevated levels of LPS-induced oxidative stress and pro-inflammatory cytokines than free SA in the human chondrocyte C28/I2 cell line. Furthermore, the antibacterial properties against E. coli and S. aureus were also improved by SA-g-GluNPs. This study demonstrated the potential of phenolic acid grafted GluNPs in therapeutic drug applications for chondroprotection and food industries.