The assumption of oxidative stress as a mechanism in oxalate induced renal damage suggests that antioxidants might play a beneficial role against oxalate toxicity. An in vivo model was used to investigate the effect of C-phycocyanin (from aquatic micro algae; Spirulina spp.), a known antioxidant, against calcium oxalate urolithiasis. Hyperoxaluria was induced in two of the 4 groups of Wistar albino rats (n = 6 in each) by intraperitoneally injecting sodium oxalate (70 mg/kg body weight). A pretreatment of phycocyanin (100 mg/kg body weight) as a single oral dosage was given, one hour prior to oxalate challenge. An untreated control and drug control (phycocyanin alone) were employed. Phycocyanin administration resulted in a significant improvement (p < 0.001) in the thiol content of renal tissue and RBC lysate via increasing glutathione and reducing malondialdehyde levels in the plasma of oxalate induced rats (p < 0.001), indicating phycocyanin's antioxidant effect on oxalate mediated oxidative stress. Administering phycocyanin after oxalate treatment significantly increased catalase and glucose-6-phosphate dehydrogenase activity (p < 0.001) in RBC lysate suggesting phycocyanin as a free radical quencher. Assessing calcium oxalate crystal retention in renal tissue using polarization microscopy and renal ultrastructure by electron microscopy reveals normal features in phycocyanin-- pretreated groups. Thus the study presents positive pharmacological implications of phycocyanin against oxalate mediated nephronal impairment and warrants further work to tap this potential aquatic resource for its medicinal application.