A series of randomly branched copolymers of styrene and divinylbenzene were prepared using a benzoyl peroxide-initiated free-radical bulk polymerization at 78°C. DVB contents were varied from 0.01% to 2%. Two samples were polymerized with 0.4% DVB to different conversions: series 9A at 6% conversion and series 9B at 15% conversion (just short of the gelation point). Both samples were fractionated and the fractions characterized by ultracentrifugation, light scattering, osmometry, viscometry, and gel permeation chromatography. The data indicated that the fractions were not of narrow MWD and that the breadth of the MWD of the fractions from series 9B were greater than those of 9A. GPC calibration curves of M, [η], and M [η] were generated for both 9A and 9B fractions by employing curve-fitting techniques to the GPC data. For all of the fractions 9B, the molecular weight calibration provided accurate values of Mz, Mw, and Mn, suggesting that no serious peak spreading had occurred in the GPC experiments. The universal calibration parameter M[η] for the 9A fractions agreed with that of linear polystyrene, while that of the high-conversion series 9B did not. It will be shown in a later paper that series 9B is highly branched, while 9A is lightly branched. Consequently, it is recommended that any GPC analysis of branching units make an allowance for the deviation of highly branched polymers from the linear M[η] calibration curve.
Read full abstract