Cardiac T2 mapping is a valuable tool for diagnosing myocardial edema, inflammation, and infiltration, yet its spatial resolution is limited by the single-shot balanced steady-state free precession acquisition and duration of the cardiac quiescent period, which may reduce sensitivity in detecting focal lesions in the myocardium. To improve spatial resolution without extending the acquisition window, this study examined a novel accelerated Cartesian cardiac T2 mapping technique. We introduce a novel improved-resolution cardiac T2 mapping approach leveraging a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT)-constrained reconstruction algorithm in conjunction with Cartesian undersampling trajectory. The method was validated with phantom imaging and in vivo imaging that involved 13 healthy participants and 20 patients. The SCC-LLRT algorithm was compared with a conventional locally low-rank (LLR)-constrained algorithm and a nonlinear inversion (NLINV) reconstruction algorithm. The improved-resolution T2 mapping (1.4 mm × 1.4 mm) was compared globally and regionally with the regular-resolution T2 mapping (2.3 mm × 1.9 mm) according to the 16-segment model of the American Heart Association. The agreement between the improved-resolution and regular-resolution T2 mappings was evaluated by linear regression and Bland-Altman analyses. Image quality was scored by two experienced reviewers on a five-point scale (1, worst; 5, best). In healthy participants, SCC-LLRT significantly reduced artifacts (4.50±0.39) compared with LLR (2.31±0.60; P<0.001) and NLINV (3.65±0.56; P<0.01), suppressed noise (4.12±0.35) compared with NLINV (2.65±0.50; P<0.001), and improved the overall image quality (4.38±0.40) compared with LLR (2.54±0.41; P<0.001) and NLINV (3.04±0.50; P<0.001). Compared with the regular-resolution T2 mapping, the proposed method significantly improved the sharpness of myocardial boundaries (4.46±0.60 vs. 3.04±0.50; P<0.001) and the conspicuity of papillary muscles and fine structures (4.46±0.63 vs. 2.65±0.30; P<0.001). Myocardial T2 values obtained with the proposed method correlated significantly with those from regular-resolution T2 mapping in both healthy participants (r=0.79; P<0.01) and patients (r=0.94; P<0.001). The proposed SCC-LLRT-constrained reconstruction algorithm in conjunction with Cartesian undersampling pattern achieved improved-resolution cardiac T2 mapping of comparable accuracy, precision, and scan-rescan reproducibility compared with the regular-resolution T2 mapping. The higher resolution improved the sharpness of myocardial borders and the conspicuity of image fine details, which may increase diagnostic confidence in cardiac T2 mapping for detecting small lesions.
Read full abstract