The representation of elements of free non-associative algebras as a set of multidimensional tables of coefficients is defined. An operation for finding partial derivatives for elements of free non-associative algebras in the same form is considered. Using this representation, a criterion of primitivity for elements of lengths 2 and 3 in terms of matrix ranks, as well as a primitivity test for elements of arbitrary length, is derived. This test makes it possible to estimate the number of primitive elements in free non-associative algebras with two generators over a finite field. The proposed representation allows us to optimize algorithms for symbolic computations with primitive elements. Using these algorithms, we find the number of primitive elements of length 4 in a free non-associative algebra of rank 2 over a finite field.
Read full abstract