The CFD technology based on the N-S equation plays an extremely important role in the detailed aerodynamic shape design of the complex surface of civil aircraft. In this paper, a consistent parameterization method, response surface model and numerical optimization method are used to conclude the optimization design. The aerodynamic optimization based on CFD, the commonly used CFD methods and free-form surface modeling technology are studied, and the challenges faced in the process of aerodynamic shape optimization of civil aircraft are analyzed. The adoption of a genetic algorithm based on the response surface increases the effectiveness of the entire optimization process.The results show that the adopted design method is effective in solving the problem of complex shape optimization using computationally expensive CFD codes. The advantage of the proposed method is that it can flexibly shape the wing body design and can quickly respond to changes in design requirements during the design process; the proposed method can be used in the design of a wider range of complex aerodynamic shapes.