Abstract
Freeform parameterizations to reproduce structure deformation are increasingly important topics in laser-scanner-based deformation analyses. High-accuracy assurance of free-form surface approximation is extremely critical for reliable deformation analysis. One main challenge in this field is the model selection. Improper model complexity could result in under-fitting the real object shape or overfitting data noises, and thus a failure of deformation analysis. A multi-sensor system could integrate advantages of different sensors and improve the quality of mission completed. This paper combines terrestrial laser scanning (TLS) and laser tracker (LT) technologies, to enhance high-accuracy surface modeling in deformation analysis. A surface-based B-spline approximation and a multi-sensor system are investigated, the latter of which focuses mainly on the combination of TLS and LT technologies. The innovation of this paper is that the surface-based B-spline approximation is validated and optimized with LT corner cube reflectors. Hypothesis testing is adopted to select the best parameter setting by judging most consistency of TLS and LT in various epochs. In the B-spline surface modeling, both instrumental and numerical uncertainties are considered. We use the instrumental uncertainty model based on intensity value, as well as numerical uncertainty based on adjustment theories. A sampling strategy is proposed to avoid data gaps and obtain even distributed data points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.