The evolving requirements of next-generation mobile communications networks can be met by leveraging vertically deployed Unmanned Aerial Vehicle (UAV) platforms integrated with Free Space Optical communications (FSO). This integration offers a flexible and scalable architecture capable of delivering high-rate communication without requiring licenses while aligning with the multi-gigabit paradigm. In recent times, the increasing availability of commercial aerial platforms has facilitated experimental demonstrations of UAV-enabled FSO systems, which play a crucial role in proposed backhaul networks and point-to-point communications by overcoming Line-of-Sight (LOS) challenges. These systems can be rapidly deployed to meet sudden demand scenarios. This document provides a comprehensive review of relevant field demonstrations of UAV-enabled FSO relay systems, with a particular focus on commercially available, free-flying platforms that are driving advancements in this domain. It categorizes the different platforms by considering the operational altitudes of these systems and their payload actuation capacity, which determines their adaptability to variables. The analysis aims to distill the design considerations that lead to optimal performance regarding communications throughput and other relevant metrics. Moreover, it also attempts to highlight areas where design choices have fallen short, indicating gaps in current research efforts toward the widespread adoption of UAV-enabled FSO relay systems. Finally, this work endeavors to outline effective design considerations, guidelines, and recommendations to bridge these identified gaps. It serves as a valuable reference guide for researchers involved in developing UAV-enabled FSO relay systems, enabling them to make informed decisions and pave the way for the successful implementation of such systems.
Read full abstract