The pyridine(diimine)molybdenum bis(imido) complex (iPrPDI)Mo(═NTol)2 (Tol = 4-methylphenyl) was synthesized by the addition of 2 equiv of 4-methylphenylazide to the corresponding molybdenum benzene derivative, (iPrPDI)Mo(η6-C6H6) [iPrPDI = 2,6-(2,6-iPr2C6H3N═CMe)2C5H3N]. Protonation of (iPrPDI)Mo(═NTol)2 with 2,6-lutinidum triflate yielded a cationic molybdenum amido complex, [(iPrPDI)Mo(NHTol)(═NTol)][OTf], which was further transformed into the neutral molybdenum amido (iPrPDI)Mo(NHTol)(═NTol) by reduction with zinc powder. A series of spectroscopic, synthetic, and pKa determination studies along with electrochemical measurements by the protonation-reduction pathway were used to establish an N-H bond dissociation free energy (BDFE) between 65 and 69 kcal/mol for the molybdenum imido-amido compound, (iPrPDI)Mo(NHTol)(═NTol). Full-molecule density functional theory studies provided a computed value of 61 kcal/mol. By contrast, reduction of (iPrPDI)Mo(═NTol)2 with KC8 afforded the corresponding anionic molybdenum complex K[(iPrPDI)Mo(═NTol)2], which has a potassium cation intercalated with the pyridine and tolyl groups. Protonation of K[(iPrPDI)Mo(═NTol)2] with the weak amidinium acid [TBD(H)][BArF24] (TBD = triazabicyclodecene; BArF24 = B[3,5-(CF3)2C6H3]4) also produced the neutral molybdenum amido complex (iPrPDI)Mo(NHTol)(═NTol). Measurement of the pKa and oxidation potential of K[(iPrPDI)Mo(═NTol)2] provided a range of 69-73 kcal/mol for the N-H BDFE of (iPrPDI)Mo(NHTol)(═NTol), in good agreement with the protonation-reduction route and completing the square scheme. The similar pKa and redox potentials obtained from each pathway demonstrate that both sequences are energetically feasible for proton-coupled electron-transfer (PCET) events. This study on the determination of N-H BDFE of the molybdenum amido complex renders fundamental insight into the N2 reduction cycle by PCET.
Read full abstract