Pyrolysates of high-molecular-weigth sedimentary fractions of the Duvernay Formation (Western Canada Basin) are dominated by 1,2,3,4- and 1,2,3,5-tetramethylbenzene, which, generated via β-cleavage, indicate the presence of diaromatic carotenoids in the macromolecular aggregates. This was substantiated by desulphurization of sulphur-rich aggregates of the polar fraction, which released (partly) hydrogenated carotenoids. Furthermore, these components were important constituents of the aromatic hydrocarbon fractions and related oils. Apart from renieratane and isorenieratane, 1H NMR analysis established the aromatic substitution pattern of the most abundant component present, which was identified as a diaromatic compound with an unprecedented 2,3,6-/3,4,5-trimethyl aromatic substitution pattern. Molecular and isotopic analyses of both soluble and insoluble fractions of organic matter revealed relationships between diagenetically-derived carotenoids found in bitumen and related oils and their precursors incorporated into high-molecular-weight fractions. Aryl isoprenoids, important components in extracts and oils, were apparently derived from thermal cracking of bound diaromatic carotenoids rather than cleavage of free carotenoids as previously suggested. Furthermore, products derived from diaromatic carotenoids were substantially enriched in 13C relative to n-alkanes of algal origin. Together with the characteristic carotenoids, this isotopic enrichment provides evidence of significant contributions from photosynthetic green sulphur bacteria (Chlorobiaceae), which fix carbon via the reversed tricarboxylic acid (TCA) cycle. In spite of the prominence of these molecular signals, the overall isotopic composition of the organic matter indicated that only a very small portion of the preserved organic carbon was derived from the biomass of photosynthetic green sulphur bacteria.