In this study, galactosylated bovine serum albumin (GB), which could be developed for a liver targeting carrier was synthetized and it was identified by Fourier transform infrared (FT-IR) spectrometer. Oridonin loaded bovine serum albumin nanoparticle (ORI-BSA-NP) and oridonin loaded GB nanoparticle (ORI-GB-NP) were prepared and optimized by the desolvation technique. During the preparation of ORI-GB-NP, galactosamine was introduced to end-cap the free aldehyde groups on nanoparticles. The characteristics of ORI-GB-NP such as particle size, zeta potential, particle morphologie, entrapment efficiency and drug loading were evaluated. The nearly spherical nanoparticles, with a narrow size distribution below 200 nm, were negatively charged with zeta potential of about -30 mV. Meanwhile, differential scanning calorimetry (DSC) and X-ray diffraction confirmed the amorphous state of ORI in ORI-GB-NP. The in vitro drug release of ORI from ORI-GB-NP presented a biphasic pattern with an initial burst effect and consequently sustained release. These results implied that the nanoparticles possessed fine physicochemical characteristics and seemed to be a stable delivery system for poorly soluble oridonin.