The building sector remains a major contributor to increasing energy consumption and emissions. Meanwhile, the energy system is becoming more complex due to the transition to clean energy sources. Current tools and policies struggle to manage this complexity, as the existing infrastructure was not designed for such large dynamic distributed energy resources. This creates an urgent need to adopt emerging technologies for enhancing building energy management systems. The objective of this research is to develop a framework that integrates Blockchain and Digital Twin technologies to provide an efficient and trusted energy management platform that supports smart cities communities and to effectively contribute to enhancing the progress of UN Sustainability Development Goals (SDGs), specifically SDG11 and SDG13. The proposed framework comprises four main elements: Blockchain platform, Digital Twin platform, Application Program Interfaces (APIs), and building energy model. Blockchain platform automates energy billing by utilizing digital currency and smart contracts with pre-set pricing tiers and feed in tariffs. Digital Twin platform provides interactive communication and visualization with physical assets. APIs enables seamless interconnectivity between both platforms. The building energy model acts as a prediction tool, and the simulation results are fed to Digital Twin platform to alert system participants in case actual consumption deviates from optimum values. The viability of the proposed framework is demonstrated using a case study of a residential apartment.
Read full abstract