In the nonmedical sputum monitoring system, a practical solution for phlegm stagnation care of patients was proposed. Through the camera, the video images of patients' laryngeal area were obtained in real time. After processing and analysis on these video frame images, the throat movement area was found out. A three-frame differential method was used to detect the throat moving targets. Anomalies were identified according to the information of moving targets and the proposed algorithm. Warning on the abnormal situation can help nursing personnel to deal with sputum blocking problem more effectively. To monitor the patients' situation in real time, this paper proposed a VDS algorithm, which extracted the speed characteristics of moving objects and combined with the DTW algorithm and SVM algorithm for sequence image classification. Phlegm stagnation symptoms of patients were identified timely for further medical care. In order to evaluate the effectiveness, our method was compared with the DTW, SVM, CTM, and HMM methods. The experimental results showed that this method had a higher recognition rate and was more practical in a nonmedical monitoring system.