The collapse factor is a significant parameter in the framework of the safety assessment and economical design of ductile structures. This fact draws attention to the necessity of a careful assessment of the limit analysis approaches. The kinematics in these structures arises in fact from the actual rotation of the plastic hinges under axial force and bending moment. It can be shown that it is possible to obtain a reliable tool capable of competing with computationally expensive methodologies. The application of the methods of limit analysis involves a simplified and idealised model of the structure and, notwithstanding the fact that hundreds of papers have been devoted to the topic, some consequences of apparently unimportant simplifications still seem to have not been properly and firmly highlighted. This paper investigates the ultimate load and collapse modes of steel frames under combined vertical and horizontal forces through limit analysis.