Pollination mapping and modeling have opened new avenues for comprehending the intricate interactions between pollinators, their habitats, and the plants they pollinate. While the Lonsdorf model has been extensively employed in pollination mapping within previous studies, its conceptualization of bee movement in agricultural landscapes presents notable limitations. Consequently, a gap exists in exploring the effects of forest fragmentation on pollination once these constraints are addressed. In this study, our objective is to model pollination dynamics in fragmented forest landscapes using a modified version of the Lonsdorf model, which operates as a distance-based model. Initially, we generated several simulated agricultural landscapes, incorporating forested and agricultural habitats with varying forest proportions ranging from 10% to 50%, along with a range of fragmentation degrees from low to high. Subsequently, employing the modified Lonsdorf model, we evaluated the nesting suitability and consequent pollination supply capacity across these diverse scenarios. We found that as the degree of forest fragmentation increases, resulting in smaller and more isolated patches with less aggregation, the pollination services within landscapes tend to become enhanced. In conclusion, our research suggests that landscapes exhibiting fragmented forest patch patterns generally display greater nesting suitability due to increased floral resources in their vicinity. These findings highlight the importance of employing varied models for pollination mapping, as modifications to the Lonsdorf model yield distinct outcomes compared to studies using the original version.