To understand how plant-pollinator interactions respond to habitat fragmentation, we need novel approaches that can capture properties that emerge at broad scales, where multiple communities engage in metanetworks. Here we studied plant-pollinator interactions over 2years on 29calcareous grassland fragments selected along independent gradients of habitat size and surrounding landscape diversity of cover types. We associated network centrality of plant-pollinator interactions and grassland fragments with their ecological and landscape traits, respectively. Interactions involving habitat specialist plants and large-bodied pollinators were the most central, implying that species with these traits form the metanetwork core. Large fragments embedded in landscapes with high land cover diversity exhibited the highest centrality; however, small fragments harboured many unique interactions not found on larger fragments. Intensively managed landscapes have reached a point in which all remaining fragments matter, meaning that losing any further areas may vanish unique interactions with unknown consequences for ecosystem functioning.
Read full abstract