Glass formers are, in general, classified as strong or fragile depending on whether their relaxation rates follow Arrhenius or super-Arrhenius temperature dependence. There are, however, notable exceptions, such as water, which exhibit a fragile-to-strong (FTS) transition and behave as fragile and strong, respectively, at high and low temperatures. In this work, the FTS transition is studied using a distinguishable-particle lattice model previously demonstrated to be capable of simulating both strong and fragile glasses [C.-S. Lee, M. Lulli, L.-H. Zhang, H.-Y. Deng, and C.-H. Lam, Phys. Rev. Lett. 125, 265703 (2020)0031-900710.1103/PhysRevLett.125.265703]. Starting with a bimodal pair-interaction distribution appropriate for fragile glasses, we show that by narrowing down the energy dispersion in the low-energy component of the distribution, a FTS transition is observed. The transition occurs at a temperature at which the stretching exponent of the relaxation is minimized, in agreement with previous molecular dynamics simulations.