Osteosynthesis of distal clavicle fractures can be challenging because of comminution, poor bone quality, and deforming forces at the fracture site. A better understanding of regional differences in the bone structure of the distal clavicle is critical to refine fracture fixation strategies, but the variations in BMD and cortical thickness throughout the distal clavicle have not been previously described. /questions (1) Which distal clavicular regions have the greatest BMD? (2) Which distal clavicular regions have the greatest cortical thickness values? Ten distal clavicle specimens were dissected from cadaveric shoulders. Eight specimens were female and two were male, with a mean (range) age of 63 years (59 to 67). The specimens were selected to match known epidemiology, as distal clavicular fractures occur more commonly in older patients with osteoporotic bone, and clavicular fractures in older patients are more common in females than males. The clavicles were then imaged using quantitative micro-CT to create 3-D images. The BMD and cortical thickness were calculated for 10 regions of interest in each specimen. These regions were selected to represent locations where distal clavicular fractures commonly occur and locations of likely bony comminution. Findings were compared between different regions using repeated measures ANOVA with Geiser-Greenhouse correction, followed by Bonferroni method multiple comparison testing. Effect size was also calculated to estimate the magnitude of difference between regions. The four most medial regions of the distal clavicle contained the greatest BMD (anterior intertubercle space 887 ± 31 mgHA/cc, posterior intertubercle space 879 ± 26 mgHA/cc, anterior conoid tubercle 900 ± 21 mgHA/cc, posterior conoid tubercle 896 ± 27 mgHA/cc), while the four most lateral regions contained the least BMD (anterior lateral distal clavicle 804 ± 32 mgHA/cc, posterior lateral distal clavicle 800 ± 38 mgHA/cc, anterior medial distal clavicle 815 ± 27 mgHA/cc, posterior medial distal clavicle 795 ± 26 mgHA/cc). All four most medial regions had greater BMD than the four most lateral regions, with p < 0.001 for all comparisons. For the BMD ANOVA, η was determined to be 0.81, representing a large effect size. The four most medial regions of the distal clavicle also had the greatest cortical thickness (anterior intertubercle space 0.7 ± 0.2 mm, posterior intertubercle space 0.7 ± 0.3 mm, anterior conoid tubercle 0.9 ± 0.2 mm, posterior conoid tubercle 0.7 ± 0.2 mm), while the four most lateral regions had the smallest cortical thickness (anterior lateral distal clavicle 0.2 ± 0.1 mm, posterior lateral distal clavicle 0.2 ± 0.1 mm, anterior medial distal clavicle 0.3 ± 0.1 mm, posterior medial distal clavicle 0.2 ± 0.1 mm). All four most medial regions had greater cortical thickness than the four most lateral regions, with p < 0.001 for all comparisons. For the cortical thickness ANOVA, η was determined to be 0.80, representing a large effect size. No differences in BMDs and cortical thicknesses were found between anterior and posterior regions of interest in any given area. In the distal clavicle, BMD and cortical thickness are greatest in the conoid tubercle and intertubercle space. When compared with clavicular regions lateral to the trapezoid tubercle, the BMD and cortical thickness of the conoid tubercle and intertubercle space were increased, with a large magnitude of difference. Distal clavicular fractures are prone to comminution and modern treatment strategies have centered on the use of locking plate technology and/or suspensory fixation between the coracoid and the clavicle. However, screw pullout or cortical button pull through are known complications of locking plate and suspensory fixation, respectively. Therefore, it seems intuitive that implant placement during internal fixation of distal clavicle fractures should take advantage of the best-available bone. Although osteosynthesis was not directly studied, our study suggests that the best screw purchase in the distal clavicle is available in the areas of the conoid tubercle and intertubercle space, as these areas had the best bone quality. Targeting these areas during implant fixation would likely reduce implant failure and strengthen fixation. Future studies should build on our findings to determine if osteosynthesis of distal clavicular fractures with targeted screw purchase or cortical button placement in the conoid tubercle and intertubercle space increase fixation strength and decreases construct failure. Furthermore, our findings provide consideration for novel distal clavicular locking plate designs with modified screw trajectories or refined surgical techniques with suspensory fixation implants to reliably capture these areas of greatest bone quality.