AbstractSurface‐wetting properties are an important cause of changing the groundwater and two‐phase fluid flows. Various factors affecting the surface wettability were investigated in a parallel‐walled glass fracture with non‐aqueous phase liquid (NAPL) (gasoline, diesel, trichloroethylene, and creosote) wetted surfaces. First, the effect of the duration of NAPL exposure on wettability change was considered at pre‐wet fracture surfaces using the various NAPL species, and the result showed that the surface became hydrophobic after the exposure time of NAPL exceeded 2000 min. Second, the initial wetting state of the surface affected the timing when the wettability change begins as well as the extent of the wettability change in an NAPL‐wetted rock fractures. Under the dry condition, the wettability change was completed within a very short time of exposure to NAPL (~5 min), and then it finally reached the intermediate and weakly NAPL wetting (contact angle of 118°). Under the pre‐wet condition, a relatively long time of exposure (~5000 min) was needed to observe the obvious change of the surface wettability, which was changed up to strongly NAPL wetting (contact angle of 142°). Third, the wettability changed by NAPL exposure was stable and maintained for a long time, regardless of water flushing rate and temperature. Finally, the wettability change by the exposure of NAPL on parallel fracture surfaces was evaluated at various groundwater flow velocities. Result showed that groundwater flow velocity has an important impact upon measured contact angle. Although fracture surfaces were exposed to NAPL at the low groundwater flow velocity, the wettability was not changed from hydrophilic to hydrophobic when the contact time between NAPL and mineral surfaces was not sufficient owing to the pulse‐type movement of NAPL. This implies that the variation of exposure pattern due to groundwater flow on the wettability change can be an important factor affecting the wettability change of fracture surface and migration behaviour at natural fractured rock aquifers in case of NAPL spill. Copyright © 2015 John Wiley & Sons, Ltd.
Read full abstract