Boron (B) is essential for plant growth and helps mitigate metal toxicity in various crop plants. However, the potential role and underlying mechanisms of B in alleviating antimony (Sb) toxicity in rice remain unexplored. In this study, we investigated the effects of H₃BO₃ supplementation (30, 50, and 75μM) on morphological growth, physiological and biochemical traits, Sb content, and the subcellular distribution of Sb in rice plants under 100μM Sb stress during the seedling stage in a hydroponic system. The results revealed that Sb toxicity severely impaired rice growth, reducing shoot biomass by 38.3%, shoot and root length by 38.9% and 23.2%, and leaf relative water content by 15.5%. Supplementation with 30μMB mitigated these adverse effects by enhancing photosynthesis and chlorophyll synthesis, restoring root activity, and improving oxidative balance through increased antioxidant enzyme activities in rice tissues. Furthermore, B supplementation significantly reduced Sb concentration in roots by 56.28%, while promoting Sb distribution in the cell wall (CW) fraction. Scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDS) microanalysis confirmed that B enhanced Sb adsorption on root CWs. Fourier transform infrared spectroscopy (FTIR) analysis indicated increased carboxyl groups in the CWs following B application under Sb treatment. Moreover, B supplementation increased the levels of pectin and hemicellulose and elevated pectin methylesterase (PME) activity by 22.0%, 69.0%, and 29.0% in roots, respectively, thus promoting Sb chelation onto the CWs. Taken together, our results provide a scientific basis and theoretical guidance for applying B to alleviate Sb toxicity in crops.
Read full abstract