The role the charge sign of simple ions plays in determining their surface affinity in aqueous solutions is investigated by computer simulation methods. For this purpose, the free surface of aqueous solutions of fictitious salts is simulated at finite concentration both with nonpolarizable point-charge and polarizable Gaussian-charge potential models. The salts consist of monovalent cations and anions that are, apart from the sign of their charge, identical to each other. In particular, we consider the small Na+ and the large I- ions together with their charge-inverted counterparts. In an attempt to avoid the interference even between the behavior of cations and anions, we also simulate systems containing only one of the above ions, and determine the free energy profile of these ions across the liquid-vapor interface of water at infinite dilution by potential of mean force (PMF) calculations. The obtained results reveal that, in the case of small ions, the anion is hydrated considerably stronger than the cation due to the close approach of water H atoms, bearing a positive fractional charge. As a consequence, the surface affinity of a small anion is even smaller than that of its cationic counterpart. However, considering that small ions are effectively repelled from the water surface, the importance of this difference is negligible. Further, a change in the hydration energy trends of the two oppositely charged ions is observed with their increasing size. This change is largely attributed to the fact that, with increasing ion size, the factor of 2 in the magnitude of the fractional charge of the closely approaching water atoms (i.e., O around cations and H around anions) outweighs the closer approach of the H than the O atom in the hydration energy. Thus, for large ions, being already surface active themselves, the surface affinity of the anion is larger than that of its positively charged counterpart. Further, such a difference is seen even in the case when the sign of the surface potential favors the adsorption of cations.
Read full abstract