Fractional differential equations have wide applications in science and engineering. In this paper, we consider a class of fractional stochastic partial differential equations with Poisson jumps. Sufficient conditions for the existence and asymptotic stability in pth moment of mild solutions are derived by employing the Banach fixed point principle. Further, we extend the result to study the asymptotic stability of fractional systems with Poisson jumps. An example is provided to illustrate the effectiveness of the proposed results.