In this paper, we study the effect of Hardy potential on the existence or nonexistence of solutions to the following fractional problem involving a singular nonlinearity: \t\t\t{(−Δ)su=λu|x|2s+μuγ+fin Ω,u>0in Ω,u=0in (RN∖Ω).\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document} $$\\begin{aligned} \\textstyle\\begin{cases} (-\\Delta )^{s} u = \\lambda \\frac{u}{ \\vert x \\vert ^{2s}} + \\frac{\\mu }{u^{\\gamma }}+f & \\text{in } \\Omega, \\\\ u>0 & \\text{in } \\Omega, \\\\ u=0 & \\text{in } (\\mathbb{R}^{N} \\setminus \\Omega ). \\end{cases}\\displaystyle \\end{aligned}$$ \\end{document} Here 0 < s<1, lambda >0, gamma >0, and Omega subset mathbb{R}^{N} (N > 2s) is a bounded smooth domain such that 0 in Omega . Moreover, 0 leq mu,f in L^{1}(Omega ). For 0< lambda leq Lambda _{N,s}, Lambda _{N,s} being the best constant in the fractional Hardy inequality, we find a necessary and sufficient condition for the existence of a positive weak solution to the problem with respect to the data μ and f. Also, for a regular datum of f, under suitable assumptions, we obtain some existence and uniqueness results and calculate the rate of growth of solutions. Moreover, we mention a nonexistence and a complete blowup result for the case lambda > Lambda _{N,s}. Besides, we consider the parabolic equivalence of the above problem in the case mu equiv 1 and some suitable f(x,t), that is, \t\t\t{ut+(−Δ)su=λu|x|2s+1uγ+f(x,t)in Ω×(0,T),u>0in Ω×(0,T),u=0in (RN∖Ω)×(0,T),u(x,0)=u0in RN,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document} $$\\begin{aligned} \\textstyle\\begin{cases} u_{t}+(-\\Delta )^{s} u = \\lambda \\frac{u}{ \\vert x \\vert ^{2s}} + \\frac{1}{u^{\\gamma }}+f(x,t) & \\text{in } \\Omega \\times (0,T), \\\\ u>0 & \\text{in } \\Omega \\times (0,T), \\\\ u =0 & \\text{in } (\\mathbb{R}^{N} \\setminus \\Omega ) \\times (0,T), \\\\ u(x,0)=u_{0} & \\text{in } \\mathbb{R}^{N}, \\end{cases}\\displaystyle \\end{aligned}$$ \\end{document} where u_{0} in X_{0}^{s}(Omega ) satisfies an appropriate cone condition. In the case 0<gamma leq 1 or gamma >1 with 2s(gamma -1)<(gamma +1), we show the existence of a unique solution for any 0< lambda < Lambda _{N,s} and prove a stabilization result for certain range of λ.