<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ u $\end{document}</tex-math></inline-formula> be a nonnegative solution to the equation <p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ (-\Delta)^{\frac{\alpha}{2}} u = \left(\frac{1}{|x|^{n-\beta}} * |x|^a u^p \right) |x|^a u^{p-1} \quad\text{ in } \mathbb{R}^n \setminus \{0\}, $\end{document} </tex-math></disp-formula> <p style='text-indent:20px;'>where <inline-formula><tex-math id="M2">\begin{document}$ n \ge 2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ 0 < \alpha < 2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ 0 < \beta < n $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ a>\max\{ -\alpha, -\frac{\alpha+\beta}{2} \} $\end{document}</tex-math></inline-formula>. By exploiting the method of scaling spheres and moving planes in integral forms, we show that <inline-formula><tex-math id="M6">\begin{document}$ u $\end{document}</tex-math></inline-formula> must be zero if <inline-formula><tex-math id="M7">\begin{document}$ 1\le p<\frac{n+\beta+2a}{n-\alpha} $\end{document}</tex-math></inline-formula> and must be radially symmetric about the origin if <inline-formula><tex-math id="M8">\begin{document}$ a<0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \frac{n+\beta+2a}{n-\alpha} \le p \le \frac{n+\beta+a}{n-\alpha} $\end{document}</tex-math></inline-formula>.
Read full abstract