An in situ tensile test of the ring-rolled GH4169 alloy is performed to investigate the plastic deformation behavior at the micro level. Slip system activations are identified by slip traces captured by a scanning electron microscope and lattice orientation data acquired by electron backscattered diffraction. Our results demonstrated that the fraction of low-angle grain boundaries gradually increased upon tensile deformation, and the misorientation evolution in the grain interior was severely inhomogeneous. The Schmid factors at the grains of interest are calculated for comparison with the actual activated slip systems. Most of the slip system activation coincides with the Schmid law, as opposed to the initiation of other potential slip systems at some grains.
Read full abstract