In this note we will generalize the results deduced in Figalli and Glaudo (Arch Ration Mech Anal 237(1):201–258, 2020) and Deng et al. (Sharp quantitative estimates of Struwe’s Decomposition. Preprint http://arxiv.org/abs/2103.15360, 2021) to fractional Sobolev spaces. In particular we will show that for sin (0,1), n>2s and nu in mathbb {N} there exists constants delta = delta (n,s,nu )>0 and C=C(n,s,nu )>0 such that for any function uin dot{H}^s(mathbb {R}^n) satisfying,u-∑i=1νU~iH˙s≤δ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\left\\| u-\\sum _{i=1}^{\ u } \ ilde{U}_{i}\\right\\| _{\\dot{H}^s} \\le \\delta \\end{aligned}$$\\end{document}where tilde{U}_{1}, tilde{U}_{2},ldots tilde{U}_{nu } is a delta -interacting family of Talenti bubbles, there exists a family of Talenti bubbles U_{1}, U_{2},ldots U_{nu } such that u-∑i=1νUiH˙s≤CΓif2s<n<6s,Γ|logΓ|12ifn=6s,Γp2ifn>6s\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\left\\| u-\\sum _{i=1}^{\ u } U_{i}\\right\\| _{\\dot{H}^s} \\le C\\left\\{ \\begin{array}{ll} \\Gamma &{} \ ext{ if } 2s< n < 6s,\\\\ \\Gamma |\\log \\Gamma |^{\\frac{1}{2}} &{} \ ext{ if } n=6s, \\\\ \\Gamma ^{\\frac{p}{2}} &{} \ ext{ if } n > 6s \\end{array}\\right. \\end{aligned}$$\\end{document}for Gamma =left| Delta u+u|u|^{p-1}right| _{H^{-s}} and p=2^*-1=frac{n+2s}{n-2s}.