Fractal analysis is crucial for understanding complex, irregular patterns found in nature, finance, and various scientific fields. It helps to reveal self-similarity, where structures repeat at different scales, providing insights into chaotic systems like weather patterns, stock markets, and biological growth. By applying fractal analysis, researchers can model phenomena that traditional geometric methods cannot easily describe, enabling better predictions and deeper comprehension of dynamic systems. The Fractals are a fascinating mathematical tool for modeling the roughness of nature and understanding structure of such complex objects. They are considered a tool for understanding the world. In general, fractal objects are characterized by the fractal dimension. The application of fractal geometry to the analysis of ECG time series data is examined in this paper. A method based on the assessment of the Fractal Dimension (FD) of ECG recordings is suggested for the identification of cardiac diseases. In this work, and in order to exploit the fractal dimension to analyze fractal signals, the notion of fractal dimension is defined by presenting methods for calculating this dimension such as Higuchi algorithm, Katz method, regularization, box-counting etc… Each of them has its own advantages and disadvantages. This study has shown that the electrocardiogram (ECG) is a fractal signal. This allows to classify heartbeats founded on the concept of fractals. The main aim is to develop a digital technique to analyze ECG signals in order to make an accurate diagnosis of cardiovascular diseases.