The Mittag-Leffler and confluent hypergeometric functions were originally developed to extend the exponential function and its area of applications. This study aims to examine some operators involving generalized Mittag-Leffler-type functions in the kernels, employing the generalized Fox-Wright function in specific circumstances. Furthermore, we investigate some of the commonly utilized generalized fractional integral operators in fractional calculus. Moreover, a numerical technique is developed to solve fractional differential equations of both kinds, linear and nonlinear. The graphic results of the examples show how effective this method is at solving fractional differential equations. Lastly, various effects and implications of these results are thoroughly examined.
Read full abstract