Optical coherence tomography angiography (OCTA) has significantly advanced the study and diagnosis of eye diseases. However, current clinical OCTA systems and software tools lack comprehensive quantitative analysis capabilities, limiting their full clinical utility. This paper introduces the OCTA Retinal Vessel Analyzer (OCTA-ReVA), a versatile open-source platform featuring a user-friendly graphical interface designed for the automated extraction and quantitative analysis of OCTA features. OCTA-ReVA includes traditional established OCTA features based on binary vascular image processing, such as blood vessel density (BVD), foveal avascular zone area (FAZ-A), blood vessel tortuosity (BVT), and blood vessel caliber (BVC). Additionally, it introduces new features based on blood perfusion intensity processing, such as perfusion intensity density (PID), vessel area flux (VAF), and normalized blood flow index (NBFI), which provide deeper insights into retinal perfusion conditions. These additional capabilities are crucial for the early detection and monitoring of retinal diseases. OCTA-ReVA demystifies the intricate task of retinal vasculature quantification, offering a robust tool for researchers and clinicians to objectively evaluate eye diseases and enhance the precision of retinal health assessments.
Read full abstract