Heterodera avenae, H. filipjevi, and H. laptipons are considered to be the major cyst nematode pathogens affecting most cereals and causing severe crop losses (Smiley and Yan 2015). In China, H. filipjevi was first recorded in Xuchang, Henan Province (Peng et al. 2010). Recently, H. filipjevi has been found in Anhui, Hebei, Shandong and Xinjiang provinces of China (Cui et al. 2021). To further understand the latest occurrence and distribution of H. filipjevi in China, a survey of cyst nematodes was conducted in the wheat planting area of Shanxi Province of North China from June 2018 to November 2020. White female cysts (5.8 ± 2.99 cysts per plant) were found on wheat roots in the sandy soil, and wheat was displaying symptoms of dwarfing, yellowing, and had few tillers in Licheng of Changzhi (N36°32´010´´, E113°27´039´´; N36°29´050´´, E113°23´023´´; N36°29´035´´, E113°22´020´´) and Zezhou of Jincheng (N35°33´057´´, E112°56´020´´) in Shanxi Province, and second-stage juveniles (J2s) were obtained from 13 soil samples using the sieving-decanting method. Four of the 13 samples were identified as H. filipjevi on the basis of morphological and molecular studies of female cysts and J2s. Morphologically, the cysts were lemon shaped and featured a pronounced vulval cone. The color ranged from light to dark brown. The white female shell was covered with a white crystalline layer. The vulval cone was bifenestrate with horseshoe-shaped bullae numerous and distinct, and a strongly developed underbridge. The main measurements (mean ± SD, range) of cysts (n = 13) were as follows: body length including neck 780.5 ± 53.9 μm (692 to 843 μm); body width 527.3 ± 55.5 μm (435 to 620 μm); length/width ratio 1.50 ± 0.21 (1.20 to 1.93); fenestra length 55.5 ± 4.1 μm (49 to 61 μm); fenestra width 24.8 ± 2.2 μm (21.1 to 28.8 μm); vulval slit length 9.0 ± 0.7 μm (7.8 to 9.6 μm); and underbridge length 66.8 ± 5.0 μm (61 to 77 μm). The measurements of J2s (n = 13) were as follows: body length 554.4 ± 23.4 μm (520to 587 μm); stylet length 22.7 ± 0.7 μm (21.5 to 23.8 μm); tail length 61.0 ± 5.5 μm (51.2 to 68.9 μm); and hyaline tail terminus length 37.3 ± 2.7 μm (33.4 to 42.3 μm). These morphological measurements are within the range characteristic of H. filipjevi (Peng et al. 2010). Genomic DNA was extracted from individual cyst (n = 6) and the rDNA internal transcribed spacer (ITS) sequence was amplified using the universal primers TW81 and AB28 (Joyce et al. 1994). The PCR test for each sample was repeated five times. The obtained ITS sequences (GenBank accession No. OQ421499 to OQ421502, 1054 bp) showed more than 99.5% similarity to those of H. filipjevi from the United States (GU079654 and KP878490), Turkey (KR704304 and KR704292), and China (MW789611, KY448473 and KT314234). The results were confirmed again by the species-specific primers HfF1 and HfR1of H. filipjevi and the target PCR fragments of 646 bp were obtained (Peng et al. 2013). The pathogenicity of H. filipjevi was verified by infesting winter wheat (Triticum aestivum 'Wenmai 19') and studying nematode developmentand reproduction with growth chamber (Cui et al. 2015). Eggs were hatched at 14-16°C, and freshly hatched J2s were used to inoculate wheat plants when the roots were approximately 1-centimeter long. Fifteen wheat plants were inoculated with 200 J2s, and three wheat plants without J2s were set as controls (Cui et al. 2021). Parasitic J2s and third- and fourth-stage juveniles were found in roots stained with acid fuchsin at 5, 15, and 25 days after inoculation (DAI), adult females were detected at 50 DAI, and a mean of 23.7 cysts per pot were extracted at 70 DAI (Cui et al. 2015). The morphological and molecular characteristics of the new cysts were identical to those of the H. filipjevi cysts from the original field samples, and no cysts formed in the control groups. Wheat is the main food and economic crop in Shanxi, and H. filipjevi, a potential threat to cereal crop production in Shanxi, should arouse sufficient attention. H. filipjevi is major cyst nematode pathogens of wheat and shows high prevalence in China. The loss of wheat production due to H. filipjevi is as high as 32.3% when the initial density ≥ 64 eggs/mL in soil (Li 2018). To the best of our knowledge, this is the first report of H. filipjevi in Shanxi Province of North China.
Read full abstract