In this paper, the homotopy analysis method (HAM) is applied to numerically approximate the eigenvalues of the second and fourth-order Sturm–Liouville problems. These eigenvalues are calculated by starting the HAM algorithm with one initial guess. In this paper, it can be observed that the auxiliary parameter ℏ, which controls the convergence of the HAM approximate series solutions, also can be used in predicting and calculating multiple solutions. This is a basic and more important qualitative difference in analysis between HAM and other methods.
Read full abstract