This study investigates the adsorption of Brilliant Green (BG) dye onto biochar derived from Syzygium cumini (Jamun) leaves (JLB). Biochar was produced via pyrolysis at 800 °C and examined employing various methods, including Scanning electron microscopy (SEM–EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, Raman spectroscopy, Zeta potential and X-ray photoelectron spectroscopy (XPS). The optimum parameters for BG dye adsorption, determined by batch adsorption studies, were a temperature of 80 °C, an initial dye concentration of 500 mg L−1, a contact period of 30 min, and an agitation speed of 400 RPM. The maximum adsorption capacity of JLB for BG was 243.90 mg g−1. It was found that the adsorption process adhered to the Freundlich isotherm model and pseudo-second-order kinetics, revealing heterogeneous adsorption with chemisorption. A novel "Theory of Pore Conflation" was proposed to explain enhanced adsorption at higher temperatures, supported by SEM and FTIR analyses. Additionally, a new equation termed "Shubhjyot's equation" was introduced to account for time dependency in adsorption capacity calculations. The thermodynamic analysis demonstrated that the process is endothermic and spontaneous. Isopropanol was the most effective organic solvent for desorption studies, demonstrating biochar regeneration potential for up to five cycles. Phytotoxicity and cyto-genotoxicity assessments demonstrated the environmental safety of JLB compared to BG dye. The use of JLB production offers a way to repurpose agricultural waste, contributing to circular economy principles. This extensive study demonstrates JLB's promise as an effective, economical, and environmentally safe adsorbent for wastewater treatment that eliminates textile dyes.Graphical
Read full abstract