Industrial processes are naturally multivariable in nature, which also exhibit non-linear behavior and complex dynamic properties. The multivariable four-tank system has attracted recent attention, as it illustrates many concepts in multivariable control, particularly interaction, transmission zero, and non-minimum phase characteristics that emerge from a simple cascade of tanks. So, the multivariable laboratory process of four interconnected water tanks is considered for modeling and control. For processes which show nonlinear and multivariable characteristics, classical control strategies like PIDs have performance limitations. Hence, intelligent approaches like Neural Networks (NN) is an important term in this juncture. The use of Recurrent Neural Network (RNN) is apt for modeling and control of nonlinear dynamic processes as it contains the past information about the process. The objective of the current study is to design and implement an adaptive control system using RNN for a nonlinear multivariable process. The proposed adaptive design comprises an estimator based on RNN, which adapts online and predicts one step ahead output. A Recursive Least Square (RLS) based back propagation algorithm is used for training the network. The controller used is also a RNN, which minimizes the difference between the predicted output and reference trajectory. The objective function is minimized using a steepest descent algorithm which gives the optimum control input. Desired performance of the system is ensured by the parallel operation of both. The proposed control strategy is implemented in a laboratory scale four tank system. The trajectory tracking and disturbance rejection response obtained are compared with the response obtained by using a well designed decoupled, decentralized IMC controller.
Read full abstract