Guanine-rich oligonucleotide sequences have the potential to form four-stranded structure known as G-quadruplex. These structures are frequently observed in crucial regions of the human genome, including promoter and telomeric regions. Due to their involvement in regulating gene expression and cell division, G-quadruplexes have emerged as promising targets for anticancer drugs. This study investigated interaction of berberine with three distinct forms of DNA within human telomeric region. The results of absorption and fluorescence spectroscopy indicated that conformation of DNA plays an important role in the mode of binding. Circular dichroism suggested that berberine promotes compaction of the unstable quadruplex structure formed under non-saline conditions. Furthermore, interaction of berberine with the stable structures of G-quadruplex resulted in a change in their compactness without altering the type of DNA structure. 3D fluorescence spectra analysis by chemometrics methods showed formation of two distinct species probably attributed to the self-association and specific binding of berberin to the different forms of DNA. It can be also concluded that berberine forms a more stable complex with the human telomeric hybride type G-quadruplex structure compared with the basket type. In conclusion, the findings imply that the successful design of drugs targeting DNA within the human telomere region necessitates careful consideration of the diverse forms of DNA.
Read full abstract