This study aims to investigate the flexural performance of ultra-high-performance concrete (UHPC) wet joints subjected to vibration load during the early curing period. The parameters investigated included vibration amplitude (1 mm, 3 mm, and 5 mm) and vibration stage (pouring—final setting, pouring—initial setting, and initial setting—final setting). A novel simulated vibration test set-up was developed to reproduce the actual vibration conditions of the joints. The actuator’s reaction force time-history curves for the UHPC joint indicate that the reaction force is stable during the initial setting stage, and it increases linearly with time from the initial setting to the final setting, trending toward stability after 16 h of casting. Under the vibration of 3 Hz-5 mm, cracks measuring 14 cm × 0.2 mm emerge in the UHPC joint. It occurs during the stage from the initial setting to the final setting. The flexural performance of wet joint specimens after vibration was evaluated by the four-point flexural test, focusing on failure modes, load-deflection curves, and the interface opening. The results show that all specimens with joints exhibited bending failure, with cracks predominantly concentrated at the interfaces and the sides of the NC precast segment. The interfacial bond strength was reduced by vibrations of higher amplitude and frequency. Compared with the specimens without vibration, the flexural strength of specimens subjected to the vibration at 3 Hz-3 mm and 3 Hz-5 mm were decreased by 8% and 19%, respectively. However, as the amplitude and frequency decreased, the flexural strength of the specimens showed an increasing trend, as this type of vibration enhanced the compactness of the concrete. Additionally, the calculation model for the flexural strength of UHPC joints has been established, taking into account the impact of live-load vibration. The average ratio of theoretical calculation values to experimental values is 1.01, and the standard deviation is 0.04, the theoretical calculation value is relatively precise.
Read full abstract