The compactification of superstrings leads to an effective field theory for which the space-time manifold is the product of a four-dimensional Minkowski space with a six-dimensional Calabi-Yau space. The particles that are massless in the four-dimensional world correspond to differential forms of type (1, 1) and of type (2, 1) on the Calabi-Yau space. The Yukawa couplings between the families correspond to certain integrals involving three differential forms. For an important class of Calabi-Yau manifolds, which includes the cases for which the manifold may be realized as a complete intersection of polynomial equations in a projective space, the families correspond to (2, 1)-forms. The relation between (2, 1)-forms and the geometrical deformations of the Calabi-Yau space is explained and it is shown, for those cases for which the manifold may be realized as the complete intersection of polynomial equations in a single projective space or for many cases when the manifold may be realized as the transverse intersection of polynomial equations in a product of projective spaces, that the calculation of the Yukawa coupling reduces to a purely algebraic problem involving the defining polynomials. The generalization of this process is presented for a general Calabi-Yau manifold.