An enormous amount of power is required in a rising nation like Bangladesh, where achieving economic growth without endangering the environment is a burning issue. The majority of people who live in coastal areas of Bangladesh do not have sufficient access to electricity. There are almost 40 million people living along Bangladesh's 724-km shoreline. Furthermore, it is remarkable that coastal regions have year-round winds, strong enough to generate enormous amounts of power. The viability and promise of wind energy in Bangladesh's southern regions are highlighted in this study. The places demonstrate the possibility for cheaper power production at 30 m–40 m altitudes. The rate of electricity does, however, rise with height. The main objective of this study is to analyze the prospect of wind energy in Sandwip and Kalapara coastal areas of Bangladesh. The data from 1990 to 2020 was taken from the database from the Bangladesh Meteorological Department (BMD) and NASA's NREL (National Renewable Energy Laboratory). These data sources were used to determine the wind power density, wind power output, energy yield, and finally estimate the CO2 emission reduction. In this paper, a novel approach to the wind energy on selected coastal area is presented and realistic calculation of energy output is carried out of the planned wind system. Finally calculated the realistic CO2 emission reduction by using this approach for a sustainable future. Estimation reveals that about 162.43 GWh of electricity can be generated annually by installing 684 wind towers on southern Kalapara (Khepupara) area and about 257.25 GWh of electricity can be generated annually by installing 1024 wind tower on the periphery of Sandwip area. So, if 1,768 wind turbines are installed on the Sandwip and Kalapara coastal region instead of burning fossil fuels, about 1,11,373.29 tons of CO2 will be prevented from being emitted annually.
Read full abstract