Although it is of great significance to master the height of the water-conducting fracture zone (WCFZ) to prevent coal mine disasters and ensure safe production, the most important thing is to predict the height and range of the WCFZ ahead of the working face design before coal mining. Therefore, the 150313 fully mechanized top-coal caving working face of the Yinying coal mine was taken as the engineering background. The development laws of WCFZ were studied using comprehensive research methods, including similar simulation experiments, key strata theory, the experience formula, the numerical simulation, etc. The results show that the WCFZ evolution stage is “goaf–caving zone–fracture zone” and the developing pattern is in a non-isosceles trapezoid gradually developing upward and forward. The height of the WCFZ in the 150313 working face is 89.36 m, and the fracture/mining ratio is 12.46, which is consistent with the actual production. Apparently, the set of indoor research methods in this paper is feasible to predict the height and scope of the WCFZ. The research results can provide a scientific reference for safe mining of the 15# coal seam in Shanxi Province and the prevention and control of roof water hazards.