AbstractIn the transportation of grain particles, elbow wear is a pressing concern. A novel approach to mitigate this involves introducing a lateral air supplement rotation mechanism that enables swirling transportation. We assessed the integration of this device at angles of 45°, 55°, and 65° to the central axis of the main pipeline. While the multiphase flow velocity within the main conduit was held constant at 20 m/s, the lateral device's airflow velocities were tested at 20, 30, and 40 m/s. Utilizing the CFD–DEM simulation for grain particle transportation around bends, our findings indicated that an optimal arrangement was with the lateral device at 55° relative to the main pipeline, with an airflow speed of 30 m/s. This setup fostered a forward particle spiral, drastically diminishing wear on the pipe wall. Experimental evaluations corroborated the simulation's outcomes.
Read full abstract