The pathogenesis of Parkinson's disease (PD) involves abnormalities in the metabolism of catecholamines. The enzyme quinone reductase 2 (NQO2) reduces quinone derivatives of catecholamines, which promotes the formation of reactive oxygen species (ROS), suggesting a role for NQO2 in the development of cellular damage typical of PD. In the present study, we investigated the relationship between 6-hydroxydophamine (6-OHDA) induced cellular damage and NQO2 activity and its levels in SH-SY5Y cell culture to establish an experimental model to evaluate the pharmacological properties of NQO2 inhibitors. Cellular damage was evaluated using the MTT and comet assays. It was shown that oxidative damage of SH-SY5Y cells upon incubation with 6-OHDA for 6, 12 and 24 h was accompanied by an increase in NQO2 activity. The increase in NQO2 protein level in SH-SY5Y cells was observed 24 h after incubation with 6-OHDA at concentrations of 50 and 100 μM. Oxidative damage of SH-SY5Y cells upon 1 h incubation with 6-OHDA is increased in the presence of the selective enzyme co-substrate 1-benzyl-1,4-dihydronicotinamide (BNAH), but is not accompanied by changes in NQO2 activity and protein levels. The data obtained demonstrate the contribution of NQO2 to the cytotoxic mechanism of 6-OHDA action.