In this paper, we study the horizontal Newton transformations, which are nonlinear operators related to the natural splitting of the second fundamental form for hypersurfaces in a complex space form. These operators allow to prove the classical Minkowski formulas in the case of real space forms: unlike the real case, the horizontal ones are not divergence-free. Here, we consider the highest order of nonlinearity and we will show how a Minkowski-type formula can be obtained in this case.
Read full abstract