A magnetically functionalized Fe3O4@ZIF-67 metal-organic framework (MOF) was prepared by electrostatic self-assembly using magnetic Fe3O4 nanoparticles as the core and ZIF-67 as the shell. The composite was characterized by electron microscopy, X-ray diffraction, Fourier- transform infrared spectroscopy, and Brunauer-Emmett-Teller measurements. Magnetic solid-phase extraction (MSPE) was performed on five flavonoids from Dicranopteris pedata using Fe3O4@ZIF-67 as an adsorbent. The developed MSPE method was combined with high-performance liquid chromatography-ultraviolet detection to preconcentrate and separate five flavonoids (rutin, quercitrin, kaempferol-3-O-α-L-rhamnoside, quercetin, and kaempferol) from Dicranopteris pedata. The factors affecting the extraction, such as the amount of Fe3O4@ZIF-67 adsorbent, salt ion concentration in the sample solution, vortex time, type and amount of desorbing solvent, concentration of formic acid to acidify the desorbing solvent, and acetonitrile ratio, were optimized. The developed method showed good linearity over the concentration range of 1.09-70.0 μg∙mL-1 for the five flavonoids, with R2 values between 0.9901 and 0.9945. The limits of detection and average recoveries for the five flavonoids were in the ranges of 39.5-56.2 ng∙mL-1 and 92.2-100.7%, respectively. The method presented herein is simple, efficient, and sensitive; it can be used for enrichment analysis of the five flavonoids in Dicranopteris pedata.