This study provides a comprehensive evaluation of the efficacy of electron beam irradiation (EBI) for microbial decontamination and its effects on the physicochemical properties of three paprika (Capsicum annuum L.) varieties. EBI significantly reduced the total populations of bacteria, yeasts, and molds, rendering them almost undetectable at an irradiation dose of 10 kGy (p < 0.05). The color properties of EBI-treated samples showed no significant changes compared to untreated controls (p > 0.05). The total carotenoid content in S17, H23, and QJ irradiated with 25 kGy decreased by 16.91 %, 22.09 %, and 24.76 %, respectively. There was a 10.82 % increase in DPPH scavenging activity in S17 paprika samples treated with 20 kGy of EBI. Notably, no significant difference in capsaicin content was observed in H23 and QJ varieties, regardless the EBI dose increased (p > 0.05). Additionally, analysis of volatile compounds suggested that the formation of new compounds (n-methyl pyrrole and dihydroactinidiolide) was increased as the radiation doses increased. The overall results suggested that EBI treatment up to 10 kGy demonstrated a high level of effectiveness in microbial inactivation while preserving the essential physicochemical properties of paprika. Industrial relevancePaprika is an indispensable condiment in people's diets and a crucial component of the chili industry. However, it is susceptible to microbial contamination during processing, leading to food safety concerns. Irradiation treatment can inactivate microorganisms and enhance the quality of paprika. This study demonstrates that EBI can effectively achieve microbial decontamination, reduce post-harvest losses, improve the hygienic quality of paprika, and provide a technical reference for the safety of paprika and other spices.
Read full abstract