The critical S concentration and S requirement of the soil microbial biomass of a granitic regosol was examined. S was applied at the rate of 0, 5, 10, 20, 30 and 50 μg S as MgSO4·7H2O, together with either 3000 μg glucose-C or 3333 μg cellulose-C, 400 μg N, and 200 μg P g –1 soil and 200 μg K g–1 soil. Microbial biomass, inorganic SO42–-S, and CO2 emission were monitored over 30 days during incubation at 25 °C. Both glucose and cellulose decomposition rates responded positively to the S made available for microbial cell synthesis. The amounts of microbial biomass C and S increased with the level of applied S up to 10 μg S g–1 soil and 30 μg S g–1 soil in the glucose- and cellulose-amended soil, respectively, and then declined. Incorporated S was found to be concentrated within the microbial biomass or partially transformed into soil organic matter. The concentration of S in the microbial biomass was higher in the cellulose- (4.8–14.2 mg g–1) than in the glucose-amended soil (3.7–10.9 mg g–1). The microbial biomass C:S ratio was higher in the glucose- (46–142 : 1) than in the cellulose-amended soil (36–115 : 1). The critical S concentration in the microbial biomass (defined as that required to achieve 80% of the maximum synthesis of microbial biomass C) was estimated to be 5.1 mg g–1 in the glucose- and 10.9 mg g–1 in the cellulose-amended soil. The minimum requirement of SO42–-S for microbial biomass formation was estimated to be 11 μg S g–1 soil and 21 μg S g–1 soil for glucose- and cellulose-amended soil, respectively. The highest levels of activity of the microbial biomass were observed at the SO42–-S concentrations of 14 μg S g–1 soil and 17 μg S g–1 soil, for the glucose and cellulose amendments, respectively, and were approximately 31–54% higher during glucose than cellulose decomposition.