Activated carbons can be applied in various areas of our daily life depending on their properties. This study was conducted to investigate the effect of thermal treatment of activated carbon on its properties, considering its future use. The characteristics of activated carbon heat-treated at temperatures of 1500, 1800, and 2100 °C based on its future use are presented. The significant effect of the treatment temperature on morphological, adsorption, electrochemical, and corrosion properties was proved. Increasing the temperature above 1800 °C resulted in a significant decrease in the specific surface area (from 969 to 8 m2·g−1) and material porosity—the formation of mesopores (20–100 nm diameter) was observed. Simultaneously, adsorption capability, double layer capacity, and electrochemically active surface area also decreased, which helped to explain the shape of cyclic voltammograms recorded in 2,4-dichlorophenoxyacetic acid and in supporting electrolytes. However, a significant increase in corrosion resistance was found for the carbon material treated at a temperature of 2100 °C (corrosion current decreased by 23 times). Comparison of morphological, adsorption, corrosion, and electrochemical characteristics of the tested activated carbon, its applicability as an electrode material in electrical energy storage devices, and materials for adsorptive removal of organic compounds from wastewater or as a sensor in electrochemical determination of organic compounds was discussed.